
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

MATHEUS SAUERESSIG

A Framework for Behavioral
Fingerprinting in Programmable Networks

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Lisandro Zambenedetti
Granville
Coadvisor: Dr. Muriel Figueredo Franco

Porto Alegre
February 2024

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The world is afflicted by death and decay.

But the wise do not grieve, having realized the nature of the world.”

— BUDDHA IN SUTTA NIPATA

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Lisandro Zambenedetti

Granville for providing both present and future opportunities in the exciting field of Com-

puter Networking. Additionally, I extend my appreciation to Professor Muriel Figueredo

Franco for his reliability, support, and assistance, this work owes its flourishing to his in-

valuable contributions. Heartfelt thanks go to my mother and father for their unwavering

support, both emotionally and materially. To my friends, I am grateful for your enduring

support, no matter the circumstances. I love each and every one of you.

Special appreciation goes to Dr. Ricardo Fasolo for assisting me during this chal-

lenging time, and I am grateful to my friend Julia for introducing me to him.

I extend my thanks to every member of the Universidade Federal do Rio Grande

do Sul, including all workers, professors. Each contribution from these individuals has

played a crucial role in shaping my education and identity. I am indebted to everyone

who has cared for me, as their acts of kindness have paved the way for my journey to this

point.

I also express gratitude to Shakyamuni Buddha for illuminating the path to bliss

and truth and for teaching the importance of leading a moderate life. Recognizing our in-

terconnectedness with life, death, and the entire Universe, let us embrace the joy of being

part of something greater than the individual "I" and release our mundane perspectives of

the world.

ABSTRACT

The evolving computer network landscape has enabled programmability in various net-

work aspects, including Software-defined Networking (SDN) for control plane programma-

bility and the introduction of the Programming Protocol-independent Packet Processors

(P4). P4, a vendor-independent protocol, allows programmability on the data plane, offer-

ing flexibility for new services and applications. However, this flexibility introduces the

need for automated solutions to monitor and manage the security of evolving networks

and services. In this work, we propose FEVER, a framework utilizing P4-based teleme-

try and network device (switch) resource consumption to create fingerprints of network

and P4 application behaviors. FEVER provides a comprehensive approach to identifying

network anomalies through various metrics. The framework was evaluated in a virtual-

ized scenario using unsupervised Machine Learning (ML) algorithms to detect diverse

P4 program behaviors and traffic overload, demonstrating its potential for early detection

of malicious activities in programmable networks. The results indicate high accuracy in

identifying misbehavior and detecting sudden changes in P4 programs affecting the net-

work.

Keywords: Programmable Networks. P4. Switch. Computer Networks. Behavior Fin-

gerprint.

Uma Abordagem para Identificação de Comportamentos em Redes Programáveis

RESUMO

A evolução do cenário de redes de computadores possibilitou a programabilidade em di-

versos aspectos de redes, incluindo Redes Definidas por Software (SDN) para programa-

bilidade do plano de controle e a introdução dos Processadores de Pacotes Independentes

de Protocolo Programável (P4). O P4, um protocolo independente de fornecedor, per-

mite a programabilidade no plano de dados, oferecendo flexibilidade para novos serviços

e aplicações. No entanto, essa flexibilidade introduz a necessidade de soluções automa-

tizadas para monitorar e gerenciar a segurança de redes e serviços em evolução. Neste

trabalho, propomos o FEVER, um framework que utiliza telemetria baseada em P4 e o

consumo de recursos de dispositivos de rede (e.g., switch) para criar impressões digi-

tais do comportamento da rede e de aplicações P4. O FEVER oferece uma abordagem

abrangente para identificar anomalias de rede por meio de várias métricas. O framework

foi avaliado em um cenário virtualizado usando algoritmos de Aprendizado de Máquina

(ML) não supervisionados para detectar diversos comportamentos de programas P4 e so-

brecarga de tráfego, demonstrando seu potencial para a detecção precoce de atividades

maliciosas em redes programáveis. Os resultados indicam alta precisão na identificação

de comportamentos inadequados e na detecção de mudanças repentinas nos programas P4

que afetam a rede.

Palavras-chave: Redes Programáveis, P4, Switch, Impressão Digital, Detecção de Ano-

malias.

LIST OF FIGURES

Figure 2.1 Overview of an Openflow Switch ...19

Figure 4.1 Proposed Workflow for FEVER framework ..29

Figure 5.1 Proposed Topology for Experiments ...35
Figure 5.2 Overview of the Methodology to Create Fingerprinting of Normal, Anoma-

lous, and Modified behavior..36
Figure 5.3 Features Correlation Heatmap ..37
Figure 5.4 Analysis of Overlapping Features ...38
Figure 5.5 RSS Comparison between Switches in Different Scenarios..........................39
Figure 5.6 P4 program features comparison to baseline program features43
Figure 5.7 Analysis of F1-Scores using Features ...44

LIST OF TABLES

Table 2.1 P4 Features Implemented on BMv2..22

Table 4.1 Overview of Initial Metrics Considered for Behavioral Fingerprinting..........31

Table 5.1 Traffic and Connections Considered for a Scenario of a Normal Traffic Flow35

LIST OF ABBREVIATIONS AND ACRONYMS

ABNT Associação Brasileira de Normas Técnicas

QoE Quality of Experience

QoS Quality of Service

ML Machine Learning

NN Neural Networks

OCSVMOne-Class Support Vector Machine

LOF Local Outlier Factor

RF Random Forest

CPU Central Processing Unit

RSS Resident Set Size

RAM Random Access Memory

KB Kilobytes

OS Operating System

PID Process Identifier

TCP Transmission Control Protocol

UDP User Datagram Protocol

SCTP Stream Control Transmission Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

API Application Programming Interface

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

DDoS Distributed Denial of Service

FPGA Field-Programmable Gate Array

BMv2 behavioral Model version 2

INT In-band Network Telemetry

IoT Internet of Things

NMAE Normalized Mean Absolute Error

NFV Network Function Virtualization

P4 Programming Protocol-independent Packet Processors

ONOS Open Network Operating System

PLC Programmable Logic Controller

SDN Software-Defined Networking

CONTENTS

1 INTRODUCTION...12
2 BACKGROUND..16
2.1 Anomaly Detection and Machine Learning..16
2.2 Behavioral Fingerprinting..17
2.3 SDN and Programmable Networks ...18
2.4 Mininet ...19
2.5 Programming Protocol-independent Packet Processors (P4)20
2.6 Bmv2 Switch ..21
3 RELATED WORK ...23
3.1 Behavioral Fingerprinting..23
3.2 Collection of Metrics...24
3.3 Anomaly Detection..25
3.4 P4-based Cybersecurity Applications ...26
4 APPROACH ..29
4.1 FEVER Methodology..29
4.2 Metrics Definition..30
4.3 Traffic Generator ..31
4.4 Monitoring and Data Processing ...32
4.5 Anomaly Detection and Behavioral Fingerprinting ..33
5 EVALUATION...34
5.1 Initial Setup ...34
5.2 Feature Selection ...36
5.3 Detection of Anomaly Traffic...39
5.4 Detection of Changes on P4 Programs..40
5.5 Detection of P4 Programs...42
5.6 Discussion and Limitations ..43
6 CONCLUSION AND FINAL REMARKS...46
REFERENCES...47
APPENDIX A — PUBLISHED PAPERS..50
A.1 Accepted Paper – AINA 2024..50
A.2 Published Paper – ERRC 2023 ...51

12

1 INTRODUCTION

Computer networks are a fundamental part of our lives. Communication issues

in large-scale applications, such as social networks, cloud environments, and streaming

platforms, can lead to billions of dollars in losses, making every second of instability a

critical concern for businesses and users alike (HUANG et al., 2023).

In today’s interconnected world, where businesses rely heavily on online services,

and consumers expect seamless experiences, network reliability and performance are

paramount. Downtime, slow loading times, or service disruptions can have significant

financial implications, damage a company’s reputation, and result in a loss of customer

trust (FRANCO; GRANVILLE; STILLER, 2023). Ensuring the robustness and efficiency

of computer networks is a constant challenge for network administrators and engineers

(LAHIRI, 2023). They must continually monitor and optimize network infrastructure to

maintain high availability, low latency, and fast data transfer rates.

The origin of those instabilities may vary, and despite advancements in technology

and network analyzing systems, systems are still vulnerable to disruptions and anomalies

(ASSEN et al., 2022). Unfortunately, detecting these issues often happens too late, and

the costs of Quality of Service (QoS) damage remain unacceptably high.

If we make a parallel of computer networks with the human body, diseases (e.g.,

anomalies) have different pathogens, causes, and have different body responses. A disease

may start as a fever and end up as an infection that kills or permanently damages the body.

It is important to identify diseases in early stages to make quick and effective treatments,

preventing their evolution and major damages. In the same fashion, computer networks

are vulnerable to many disruptions, such as malicious activities promoted by external

agents, malfunctions in the network components, or a bug. Those disruptions may lead

to several losses and a decline in QoS, compromising the user experience. To avoid such

scenarios, we must detect any deviation in network functionality that might be correlated

to a disruption, preventing events that might affect the quality of the system directly. For

that, we must fully understand, for example, what kind of behavior a Distributed Denial-

of-Service (DDoS) attacks may cause in the switch pipeline, if the attack interferes with

ports, headers, timestamps, or any other information that can be analyzed from the device

using monitoring techniques. To do so, we rely on Programmable Networks and Software-

defined Networking (SDN) (NUNES et al., 2014) technologies, which have evolved to

operate computer networks dynamically and enables to collect data of network devices

13

and network flow in a robust and tailored way.

One of the most relevant contributions of the last decade in computer networking is

the SDN concept. SDN has revolutionized the way networks are managed and configured,

separating the control plane from the data plane (KREUTZ et al., 2015). This approach

allows for greater flexibility, scalability, and programmability in network infrastructure.

By centralizing network management through software, SDN has enabled more efficient

resource utilization, faster network provisioning, and easier implementation of network

policies. As a result, it has significantly enhanced network performance and security,

making it a pivotal advancement in the field of computer networking.

A relevant aspect of this technology is the wide range of techniques that extract

data from the network, especially from networking devices. Back then, forwarding de-

vices were treated as black boxes, and information availability was a subject of suppliers’

discretion. Thanks to SDN technology, network management systems can get data from

the network at the kernel-level in real-time applications. Open-source communities, such

as the P4 Language (BOSSHART et al., 2014), developed frameworks to collect and col-

late this data. Despite the fact that we are able to collect a large amount of data, there is

still need to develop solutions to filter and qualify useful information about networks and

devices behaviors.

Different techniques can be used and have been used in the literature to address

problems on programmable networks from different perspectives (ZHENG et al., 2023) .

One of promising techniques that are not well explored in the context of programmable

networks, is the idea of Behavioral Fingerprinting.

Behavioral Fingerprinting is a technique used in network monitoring and cyber-

security to characterize and identify the unique behavior patterns of network devices or

entities (SAUERESSIG et al., 2023). Much like how a human fingerprint uniquely identi-

fies an individual based on their distinct patterns, Behavioral Fingerprinting analyzes and

captures the behavior of devices, such as switches, routers, or even users, by monitoring

their interactions and activities over time. This approach involves collecting and analyzing

a wide range of data, including network traffic, communication patterns, latency measure-

ments, queue utilization, and more. By creating a Behavior Fingerprint for each device

or entity, network administrators and security professionals gain valuable insights into

normal operating behaviors, allowing them to detect anomalies, identify potential threats,

and optimize network performance. This proactive approach to network monitoring and

security enables quicker identification and response to deviations from established behav-

14

ioral norms, enhancing the overall robustness and reliability of the network infrastructure

(SáNCHEZ HUERTAS CELDRáN, 2021).

In the context of computer networks, Behavior Fingerprint refers to the unique

patterns and characteristics exhibited by network devices , such as switches or routers, in

their normal operation. Each device has its own specific behavior and response to different

network conditions and traffic. By analyzing and understanding these behavioral patterns,

network administrators can identify deviations and anomalies that might indicate potential

security threats or malfunctions. The Behavior Fingerprint of a network device might

include information about how it handles traffic, processes packets, uses computational

resources, and responds to various commands and requests. This data is collected through

monitoring techniques and can be used to establish a baseline of normal behavior for

the device. When anomalies occur (e.g., unusual traffic patterns, unexpected responses,

or deviations from the established baseline) (FRANCO et al., 2021) it may indicate the

presence of malicious activity, network attacks, or hardware/software issues. Therefore,

by continuously monitoring and comparing the device’s current behavior to its behavioral

fingerprint, network administrators can detect and respond to potential threats or network

performance problems proactively.

However, there is still room for approaches that explore Behavioral Fingerprint-

ing to identify and mitigate anomalies. Behavioral Fingerprinting holds the promise of

enhancing network monitoring and security by providing a deeper understanding of de-

vice behavior beyond traditional monitoring metrics. By capturing and analyzing unique

behavioral patterns, such as traffic flow characteristics, protocol usage, and performance

metrics, it can offer a more comprehensive and context-aware perspective of network de-

vices’ activities.

This Bachelor Thesis proposes FEVER, a framework that allows the detection of

different types of anomaly by analyzing each switch individually in a network system.

FEVER establish metrics to be collected and analyze it during an a unknown activity, be-

ing able to identify if a switch is “sick” or not. The name FEVER comes from the idea that

human fever is a detection system able to identify many types of infections from differ-

ent agents and morphologies(e.g., viruses, bacteria, fungi and even cancer cells). A fever

does not tell what kind of anomalies are occurring in the human body, but it is able to tell

that something is wrong. While its inspiration is also able to mitigate an anomaly, FEVER

only detects anomalies. The mitigation process is decided by the network managers, but

we do not discard to implement mitigation techniques in future work.

15

Therefore, in summary, this work provides the following contributions: An or-

ganized methodology for achieving behavior fingerprint; an quick method for detecting

anomalies in early stages; and a new way to differentiate P4 Programs.

For our test scenario, we used P4 Programs from the P4 Language Tutorials repos-

itory available on Github (SAUERESSIG, 2024). The testbed consists of a Mininet virtual

network with three switches and three hosts. We have modified the python script of the

tutorials responsible by setting up the Mininet environment and the behavioral Model ver-

sion 2 (bmv2) switches to create a normal flow of packages and elephant flow. We also

modified the P4 Programs in order to identify these modifications. To collect resource

data about the switches, we have written a shell script that runs the perf and proc/stat/

commands simultaneously, each second it would save resource metrics to csv for each

switch during a time of one hour. Mininet threats each switch as a single process, so we

identify the Process Identifier (PID) corresponding to the switch activity and then moni-

tors it using proc/stat/ and perf. Then, after one hour running the exercise, we have gather

the analyzed data to csv file with the PID of the switch.

The rest of this document is organized as it follows. Section II provides back-

ground on theoretical information. Section III discusses related work on programmable

networks and Behavioral Fingerprinting. Next, Section IV introduces the FEVER ap-

proach and provides implementation details, while Section V presents the evaluation of

the work. Finally, Section VI concludes the work and provides opportunities for future

work.

16

2 BACKGROUND

In this section, we focus on describing concepts and technologies that are relevant

to the fully understanding of such a work. This includes concepts related to anomaly

detection, computer networks and Behavioral Fingerprinting.

2.1 Anomaly Detection and Machine Learning

Anomaly detection refers to the problem of finding patterns in data that do not

conform to expected behavior (SANCHEZ et al., 2021). An anomaly, is an event or

pattern that deviates significantly from the expected or normal behavior. In other words,

it represents an unusual or abnormal activity that differs from the established baseline

of typical behavior. The detection of anomalies provides the possibility of taking action

against potential misbehavior and security threats, ensuring the integrity and reliability of

the network, while also ensure the QoS and Quality of Experience (QoE) for users.

Anomalies can manifest in various ways, including unusual spikes in network traf-

fic, unauthorized access attempts, unexpected data patterns, or irregular system behavior.

(SANCHEZ et al., 2021) These deviations from the norm can be indicative of cyberat-

tacks, system malfunctions, or operational errors.

Many techniques are available to detect anomalies. Most of them are Machine

Learning (ML) algorithms that identifies deviations and outliers, from simple data statis-

tics to hyperdimensional data (CHANDOLA; BANERJEE; KUMAR, 2009). We have

implemented two ML algorithms in order to detect anomalies due their qualified charac-

teristics to the scenario: The One-Class Support Vector Machine (OCSVM) and Local

Outlier Factor (LOF).

OCSVM was introduced by (SCHÖLKOPF et al., 1999). A Support Vector Ma-

chine can create a non-linear decision boundary to separate two classes. It separates them

in the higher dimensional space, projecting data points that cannot be separated by a

straight line in a higher dimensional space, so there is a hyperplane that separates the data

points of one class from another. OCSVM, on the other hand, has only one class, because

it is a unsupervised learning technique and not a usual classifier algorithm. It separates

all the data points from the origin in a higher dimensional space and maximizes the dis-

tance from this hyperplane to the origin. In other words, the origin is the class that the

algorithm tries to separate from the normal class. It adapts to datasets where the normal

17

class significantly outnumbers the anomalous class, by focusing on learning the charac-

teristics of the majority class. It is effective in high-dimensional spaces, making suitable

for datasets with a large number of features. FEVER works with large amounts of features

to be as versatile as possible, so OCSVM is really useful in this context. Also, it has the

capability of providing an outlier score for each data point, indicating its distance from

the decision boundary, giving a degree of abnormality. This is useful for understanding

anomalies in different levels and for helping to understand the early stages of an attack or

a malfunction.

(BREUNIG et al., 2000) introduces LOF as an algorithm of anomaly detection.

It is local in that the degree depends on how isolated the object is with respect to the

surrounding neighborhood. It evaluates the local density of data points relative to their

neighbors, identifying outliers based on their deviation from the local context. It mea-

sures the extent to which a data point’s local neighborhood differs in density compared to

its neighbors, making it effective for detecting anomalies in datasets with varying density

patterns. Computer Network are highly contextual, having unique traits and behaviors. A

virtual network might not present the exact same numbers a real-world network presents,

but LOF respect this characteristic due its capability because it considers the local neigh-

borhood of each data point, allowing it to identify outliers relative to their local context.

It also performs pretty well when applied to high-dimensional data.

2.2 Behavioral Fingerprinting

A research field within behavior data science is focused on creating device be-

havior patterns (fingerprints) able to optimize their performance and detect potential ab-

normalities in the early stages. (SANCHEZ et al., 2021) We call this field Behavioral

Fingerprinting. It is a collection of metrics of an object with expected values over time.

The Behavior Fingerprint of a network device might include information about how it

handles traffic, processes packets, uses computational resources, and responds to various

commands and requests.

This data is collected through monitoring techniques and can be used to establish

a baseline of normal behavior for the device and network applications running. There are

two possible application scenarios for it: one consists identifying devices with different

granularity levels to differentiate them and fully exploit their capabilities while the second

focuses on detecting cyberattacks, malfunction, or misbehavior to mitigate them. In this

18

work, we focus in the second scenario, but FEVER can be applied for the first one as well,

since it is able to identify different switches. Deciding the scenario is crucial to select a

behavior source, metrics that describes a functioning device. They can be externally col-

lected, such as electromagnetic signals, clock drift in time and packet payload; or they can

be in-device behavior source, such as hardware events, resource usage and the behavior

of softwares and processes inside the device. We use in-device behavior source, as we see

in the next sections. All this data needs to be processed, we can use different approaches

to do so. The existing techniques are categorized in the following five groups: rule-based,

statistical, knowledge-based, Machine Learning (ML) and Deep Learning (DL), and time

series approaches. Our approach use ML techniques to process our data. After the data

processing, we achieved a detection system that uses the normal behavior of the device as

a parameter, the Behavior Fingerprint.

2.3 SDN and Programmable Networks

SDN is a revolutionary approach to network management that decouples the hard-

ware forwarding system from control decisions and allows network administrators to con-

trol and manage network resources dynamically through software applications. (NUNES

et al., 2014) Unlike traditional network architectures, SDN separates the control plane

from the data plane, enabling more flexibility, scalability, and programmability. The con-

trol plane decides how data is managed, routed, and processed, while the data plane is

responsible for the actual moving of data.

One of the most relevant architectures of SDN is OpenFlow. (NUNES et al., 2014)

It is an architecture which P4 Programs are based on. Figure 2.1 show how it works. The

forwading device called OpenFlow switch has a number of flow tables (e.g., rule, actions

and statistics) and it is connected to the controller by the OpenFlow Protocol, a stan-

dardized communication protocol used in SDN to facilitate the exchange of information

between the control plane and the data plane of network devices. Flow tables defines how

the packets belonging to a flow will be processed and forwarded. The flow tables have

match rules for incoming packets, counters to collect statistics and a set of instructions,

or actions, to be executed when a match is done.

Upon a packet arrival at an OpenFlow switch, packet header fields are extracted

and matched against the matching fields portion of the flow table entries. If a matching

entry is found, the switch applies the appropriate set of instructions, or actions, associated

19

with the matched flow entry. If the flow table look-up procedure does not result on a

match, the action taken by the switch will depend on the instructions defined by the table-

miss flow entry.

Figure 2.1: Overview of an Openflow Switch

Source: (NUNES et al., 2014)

This cutting-edge technology has the potential to significantly enhance Behavior

Fingerprinting and anomaly detection in network environments. SDN’s programmabil-

ity allows it to trigger automated responses when anomalies are detected. For example,

it can isolate affected devices, reroute traffic, or alert security personnel, reducing re-

sponse time and minimizing potential damage. Also, SDN’s ability to gather and process

large amounts of network data makes it an ideal environment for machine learning-based

anomaly detection. By leveraging machine learning algorithms, SDN can continuously

learn from network behavior and detect previously unseen threats effectively.

2.4 Mininet

Mininet was introduced by (LANTZ; HELLER; MCKEOWN, 2010). It is a tool

for rapidly prototyping networks, visioning a flexible, deployable, scalable and realistic

SDN prototypes. Mininet creates a virtual network by placing host processes in network

namespaces and connecting them with virtual Ethernet pairs. A virtual Ethernet pair, or

veth pair, acts like a wire connecting two virtual interfaces; packets sent through one

interface are delivered to the other, and each interface appears as a fully functional Eth-

20

ernet port to all system and application software. Veth pairs may be attached to virtual

switches such as the Linux bridge or a software OpenFlow switch. A host in Mininet is

simply a shell process (e.g., bash) moved into its own network namespace with the un-

share(CLONE NEWNET) system call. Each host has its own virtual Ethernet interface(s)

(created and installed with ip link add/set) and a pipe to a parent Mininet process (e.g.,

mn) which sends commands and monitors output. Software OpenFlow switches provide

the same packet delivery semantics that would be provided by a hardware switch. Both

user-space and kernel-space switches are available.

Mininet can be used to emulate a network system to test our anomaly detection

system. Prototype behavior should represent real behavior with a high degree of confi-

dence; for example, applications and protocol stacks should be usable without modifi-

cation, according to (LANTZ; HELLER; MCKEOWN, 2010). Thanks to this feature,

Mininet is able to reconstruct a reliable testbed to analyze a system in Behavioral Finger-

printing process.

2.5 Programming Protocol-independent Packet Processors (P4)

P4 is a high-level language for protocol-independent packet processors based on

the OpenFlow architecture. (BOSSHART et al., 2014) It was designed to reach three main

goals: Reconfigurability, the controller ability of changing the parsing and processing of

packets in switches; Protocol independence, so the switch can be untied to any specific

network protocol; and finally target independence, the ability to describe packet process-

ing functionality independently of the specifics of the underlying hardware. The typical

P4 program pipeline consists of stages like parsing, matching, action execution, and de-

parser. In the parsing stage, incoming packets are dissected into fields, and the matching

stage identifies relevant patterns based on header information. Actions specify the pro-

cessing to be applied, such as modifying headers or forwarding packets. The deparser

stage formats the processed packet for transmission. P4 has an Application Programming

Interface (API) called P4Runtime, which is a control plane specification for controlling

the data plane elements of a device defined or described by a P4 program. It is used

together with a P4 program to configure a programmable switch.

21

2.6 Bmv2 Switch

Behavioral model version 2 (bmv2) is a virtual switch used to operates its for-

warding process according to a P4 Program. According to (FOUNDATION, 2023), this

is the second version of the reference P4 software switch and it is written in C++11. It

takes as input a JavaScript Object Notation (JSON) file generated from a P4 program by

a P4 compiler and interprets it to implement the packet-processing behavior specified by

that P4 program. It runs on a general purpose Central Processing Unit (CPU) such as

Intel/AMD/etc.

It implements the P4 features listed in the table 2.1. They correspond to the P4_14

language specification, and also with P4_16 plus the v1model architecture, which is in-

tended to match the architecture defined in the P4_14 language specification.

The specific target used in this work was simple_switch_grpc, which can accept

TCP connections from a controller, where the format of control messages on this connec-

tion are defined by the P4Runtime API specification and it is used for debug purposes.

In a Linux environment, a simple_switch_grpc process corresponds to a switch parsing

packages according to a P4 compiled program. This process can be used to gather the

performance metrics of these switches for building a Behavior Fingerprint.

22

Table 2.1: P4 Features Implemented on BMv2
Feature Description
Counters Tracks the number of packets or bytes that

match specified conditions.
Meters Measures and regulates the rate of packet flow

based on configured rules.
Registers Storage for maintaining state information ac-

cessible by P4 programs.
Action Profiles Grouping of actions that can be executed to-

gether, enhancing code modularity.
Action Selectors Mechanism for selecting one action from a set

of actions to execute.
Hash and Checksum

Functions Various functions for computing hash values
and checksums.

Pseudo-Random
Number Generation Generates random numbers for specific use

cases in P4 programs.
Digest Messages Messages generated by the data plane and sent

to the control plane for communication.
Switch Architecture Components include ingress parser, ingress

control, packet buffer with packet replication
engine, egress control, and egress deparser.

Multicast
Replication Replicates packets for multicast transmission to

multiple destinations.
Cloning/Mirroring

of Packets Creates copies of packets for analysis or moni-
toring purposes.

Resubmit
Packets Redirects packets from the end of ingress back

to the start of ingress.
Recirculate
Packets Redirects packets from the end of egress back

to the start of ingress.

23

3 RELATED WORK

In this section, we discuss different work with focus on building device fingerprint

and also data collectors that have been proposed to assist network managers to increase

efficiency and network protection. We also provide an analysis of approaches for anomaly

detection and network security management that are related to this work.

3.1 Behavioral Fingerprinting

In (BAI; KIM; REXFORD, 2022), the authors introduce P40f, a passive OS finger-

printing tool that runs directly on programmable switch hardware to identify the Operating

Systems (OS) running on hosts in a network. OS fingerprinting is helpful for managing

enterprise networks, detecting vulnerabilities, and applying security policies based on the

OS type. Passive fingerprinting is preferred over active methods, as it monitors network

traffic in real-time without introducing additional network load. P40f is implemented us-

ing the P4 language on Intel Tofino switch hardware. It uses TCP header and option fields

in TCP SYN packets to perform OS fingerprinting, similar to the software-based tool p0f.

Unlike traditional software-based passive fingerprinting tools, P40f can process traffic at

high line rates and take direct actions, such as dropping, rate-limiting, or redirecting traf-

fic, based on the identified OS, without needing control-plane messages. However, P40f

is very specialized and specified to detect OS-specific vulnerabilities and does not gather

information about non-host devices.

In another work, (SáNCHEZ HUERTAS CELDRáN, 2021) uses Raspberry Pi

devices as a testbed for anomaly detection and device recognition. The main goal of

this work is to verify how feasible is building a solution to identify the sensors belong-

ing to a crowdsensing platform in and to check how does the solution scale when the

number of devices deployed increases. It has also investigated the most suitable data

sources of resource-constraint devices and ML/DL algorithms to create Behavior Finger-

prints detecting anomalies produced by threats and if it is possible to build a common

ML/DL-based system that uses device Behavior Fingerprinting to detect anomalies pro-

duced by heterogeneous cyberattacks affecting different resource-constrained devices of

crowdsensing platforms.

Other approaches also consider bmv2 switches as tested to implement approaches for fin-

gerprinting. In (KUZNIAR; NEVES; HAQUE, 2022), the authors proposed FingerP4, a

24

solution to identify events from seven different Internet of Things (IoT) devices entirely in

the data plane. Next, PoirIoT (KUZNIAR et al., 2022) was proposed as a more robust so-

lution for IoT device detection based only on packet metadata (e.g., length and direction)

and could detect several devices as soon as it exchanges its first packets in the network.

The work was also implemented in a Tofino-based programmable switch.

While there is existing work that focuses on fingerprinting, only some of it concen-

trates on analyzing devices from an individual device perspective. Based on our investi-

gations, the identification of anomalies at an earlier stage requires monitoring each device

individually to prevent anomalies from propagating throughout the network. Therefore,

there are need for developing of techniques that enable the network management system

to identify if a forwarding device is behaving abnormally.

3.2 Collection of Metrics

Metrics are an important part of Behavioral Fingerprinting. In this section we

analyze works that collect metrics for diverse uses. An effective way to collect informa-

tion about devices and architectures in programmable networks is to use In-band Network

Telemetry (INT). Due to its fine-grained monitoring, INT can generate a high report rate,

leading to many report packets sent to the collector.

The INTCollector is introduced in (TU et al., 2018) to address this issue and effi-

ciently process INT telemetry reports. It stores INT metric values in a time-series database

using InfluxDB. This database is selected for its high write throughput, support for cus-

tom timestamps, and push mechanism, allowing efficient data storage. The key compo-

nents of the implementation are the event detection mechanism, which detects significant

changes in network metrics, and the exporter, which sends metric values to the database

periodically or when new events occur. INTCollector can help with this to some extent.

Collecting and analyzing the INT metadata over time can build a profile of the switch’s

behavior. For example, it can track the switch’s handling of flows, latency experienced at

different hops and queue occupancy patterns. However, INTCollector focuses mainly on

the INT Framework and does not propose hardware monitoring.

For resource monitoring, (NGO et al., 2003) proposes a novel monitoring tool

called Wireless Ad-hoc Network Monitoring Tool (WANMon), which allows the user to

monitor the resource consumption by ad-hoc wireless network based activities. It can be

installed in a wireless node to monitor many metrics, such as the number of packets and

25

bytes that are sent and received by the wireless interface, and protocol used; the power

consumption in sending and receiving data either for the purposes of the networking ap-

plications running on the node or for routing the data of the other network node; how

much memory, over a past period of time, was used to send and receive data and CPU

usage in kernel space for networking applications.

In another work, (DONG et al., 2019) focused in CPU performance to build a

graph based device fingerprint scheme for devices identification and authentication. The

experiment consisted in analyzing 10 identical PCs. Each PC has two CPUs, 2 GB Ran-

dom Access Memory (RAM) and Hard Disk Drive (HDD). Considering the effect of data

access speed of the local RAM and reading/writing speeds of the HDD, the paper proves

that each CPU has a singular graph, identifying different devices.

All of these works provide data collectors or metrics that can be used to build

device Behavior Fingerprints since more data available can help approaches to identify

anomalous behaviors in order to identify technical problems in automated ways. It is

also possible to use different approaches concomitantly, adapting them for a better use by

specific frameworks.

3.3 Anomaly Detection

The following section aims to show different approaches of implementations to

detect anomalies in computer networks. Many techniques have been implemented, using

information of different metrics. We present some works that each one have a different

approach for anomaly detection.

With the increasing connectivity of Programmable Logic Controllers (PLCs) in the

industrial IoT, cybersecurity threats have received attention. (HAN et al., 2021) presents

a method to detect and defend against cyberattacks targeting PLCs, specifically focus-

ing on denial of service (DoS) attacks and control-logic injection attacks. The proposed

approach monitors CPU usage to identify abnormal temporal behavior and employs a

control-flow analysis to detect stack-based buffer overflow attacks. Implemented in a wa-

ter tank control system, experimental results demonstrate the effectiveness of the method

in enhancing system security with minimal overhead.

(GULENKO et al., 2016) proposes a system architecture for real-time anomaly

detection in large-scale Network Function Virtualization (NFV) systems built upon the

OpenStack platform, a widely used open-source cloud software, to enhance monitoring

26

and analysis for real-time anomaly detection. The basic data to collect represents the

usage of different resources in each host. This includes CPU and RAM usage, I/O op-

erations of different partitions and mount points, and network I/O metrics of different

network interfaces and protocols. The analysis involves supervised and non-supervised

classification methods, with preliminary experiments showing a high percentage of cor-

rectly identified anomaly situations. The proposed framework, integrated into OpenStack,

activates pre-defined countermeasures upon anomaly detection to mask or repair outages

or degraded performance.

We observed that there is no a de facto approach for anomaly detection. Most of

the works specialize in a type of anomaly or they depend of specific metrics. In real world,

anomalies appear in different forms and sometimes at the same time. It is important to

propose approaches to address such a gap by proposing architectures and methodologies

able to handle different anomalies using a diverse set of metrics.

3.4 P4-based Cybersecurity Applications

We conducted also a systematic literature, particularly of applications for detect-

ing and mitigating cyberattacks and managing cybersecurity in programmable networks.

We focused on three main aspects: (i) network availability, (ii) network security, and (iii)

privacy.

P4 programs have been developed to ensure greater network availability and per-

fect functioning from a performance and security point of view. Such applications include

protecting against impersonation attacks by filtering malicious traffic (LI et al., 2019),

identifying DDoS attacks by statistically analyzing traffic flows (DING; SAVI; SIRA-

CUSA, 2021), and also verifying P4 programs using static checks (DUMITRESCU et al.,

2020) and assertions (WANG et al., 2023) to identify possible execution faults. However,

most of this work focuses primarily on traffic analysis only or has too specific use cases

for cyberattack detection. Such solutions also have limitations in identifying dynamic

changes on the network, such as when a P4 program is maliciously replaced or changed

by network operators or even when a potential cyberattack is imminent (e.g., anomalous

behaviors started). Thus, we argue that identifying anomalies at an earlier stage requires

an intelligent monitoring of devices individually to prevent anomalies from propagating

throughout the network.

Therefore, although there are several emerging applications for P4 programs and

27

programmable networks, there is still a need for automated solutions that allow for proper

monitoring and management of the security of existing networks and services. Current

challenges include limitations in memory usage and accessibility for P4 program devel-

opment and using collected metrics for effective performance and security applications

(HAUSER et al., 2023). There is also the need to make the network more robust and au-

tonomous, which involves combining telemetry and ML elements to create infrastructures

that adapt to the needs of the network and can predict possible failures. Such elements

can support better detection of cyberattacks and anomalies while improving the detection

performance of interested behaviors.

ML can be an ally to address such issues due to its potential to understand complex

data patterns and adapt to heterogeneous scenarios based on different training datasets

(USAMA et al., 2019). (ALMEIDA; PASQUINI; VERDI, 2021) presents an experiment

that combines Machine Learning (ML) algorithms with INT to estimate service metrics

in computer networks. The main goal is to improve the management of networks and

services by utilizing the fine-grained data provided by INT in combination with ML tech-

niques. Specifically, the experiment focuses on estimating the QoS of a video streaming

service called DASH (Dynamic Adaptive Streaming over Hypertext Transfer Protocol

(HTTP)), which is known for its ability to adapt video quality according to network

conditions.

The experiment was conducted using a virtualized environment with network

components and virtual machines. Data packets were sent with INT metadata appended

at each hop, allowing for detailed network metrics collection. Three load patterns were

used: sinusoid, flashcrowd, and a mix of both. ML models, including Decision Tree (DT),

Random Forest (RF), K-nearest neighbors (KNN), and Neural Networks (NN), were ap-

plied to estimate the QoS metrics based on the INT data. The results showed that the

Random Forest (RF) algorithm outperformed other ML models, achieving a Normalized

Mean Absolute Error (NMAE) of below 10 % for estimating the QoS of the video stream-

ing service. Notably, the buffer-related metadata had the most influence on the learning

model, and the network node closest to the client had the most accurate information for

predicting video metrics.

Overall, the experiment demonstrated the potential of using ML together to im-

prove the estimation of service metrics in computer networks. The combination of ML

algorithms, INT data, and resources usage can enhance network management and ser-

vice quality. The opportunity has therefore arisen to implement approaches based on ML

28

to analyze statistical metrics and resource usage behavior in order to identify anomalies

before such behavior becomes a problem for the operation of services in programmable

networks (SAUERESSIG M. F. FRANCO, 2023), such as a DDoS attack or a malicious

change to a network program. To do this, we can use the concept of Behavioral Finger-

printing, which, although there are applications of the concept in other scenarios (e.g.,

malware detection in IoT scenarios) (SANCHEZ et al., 2021), is still is underinvestigated

in the context of programmable network security.

29

4 APPROACH

This section details the approach of our methodology and its mechanisms. FEVER

proposes and implements an approach to explore programmable device Behavioral Fin-

gerprinting for anomaly detection. When anomalies occur (e.g., unusual traffic patterns,

unexpected responses, or deviations from the established baseline), it may indicate the

presence of malicious activity, network attacks, or hardware/software issues. Therefore,

by continuously monitoring and comparing the device’s current behavior to its Behav-

ior Fingerprint, FEVER users can detect and respond to potential threats or to network

performance problems proactively.

4.1 FEVER Methodology

In Figure 4.1 we can see the workflow of FEVER. It consists of different steps of

analysis, from creating a testbed to processing the data collect on it. FEVER works in

such way you can test many types of environment and collect different types of data that

might help us to identify problems in the device, leading to a diagnosis of the network

whose devices are presenting anomalous behavior.

Figure 4.1: Proposed Workflow for FEVER framework

vSwitch
vSwitch

Host 2

Mininet and BMv2

Data Processor

P4 Program
Fingerprinting

Anomaly Detection

Testbed

Device
Fingerprinting

Host 1

Traffic
Generator

Metrics Definition

network measurements,
syscalls, resources usage

1

4

5 5

6

3
P4 Programs
and Monitors

2

Source: Original results from the research

First, we must define metrics related to the devices of our network. They can be

syscalls, resource usage metrics that can be obtained with perf, proc or top in a virtual

30

network running in a Linux system or specific commands of the device that give us how

much memory and CPU is being used by the switch.

After choosing the metrics we want to monitor and collect, we must create our

testbed. We choose a topology and generate traffic that simulates a normal network be-

havior. It is also viable to use a real network as testbed. Then we monitor the activity of

the switches in the tesbed using monitoring programs or P4 Programs in the case of using

INT. We monitor the network for sufficient time, which can be many hours, and then we

process the data collected from the testbed in a organized way. We then select relevant

features and discard the ones which has high correlation. The Behavior Fingerprint is

ready, and we use it to train ML models to identify anomalies in the network. These

models can run in real time to detect whenever an anomaly appears in a device from the

network.

Each of the steps proposed by the FEVER methodology is discussed in details in

the rest of this chapter, including implementation details and examples of usage scenarios.

4.2 Metrics Definition

This step of FEVER consists in selecting metrics that might be relevant for the

analysis. These metrics can be from different sources and have different natures. A net-

work manager must ask the question: "In the presence of this type of anomaly, what kind

of characteristics may exhibit anomalous behavior?". For example, a flood attack might

create longer queues or use more instructions to process each package flooding the device.

A malware spreading through the network might allocate memory in the switch system.

Depending on the nature of the anomaly, the network manager may choose some types

of metrics or, if they want to identify the maximum number of different anomalies, they

might use all of the metrics available, however metrics collection might be an expensive

task to complete.

The metrics must be related to switch since we are predicting the devices behavior

individually. They must tell something about the device behavior. Resource usage metrics

such as memory allocated by the switch to do its operations tells us how much memory

the switch is currently using in its network environment.

An example of metrics definition would be choosing to monitor the memory and

CPU used by the switch, the queue length and the switch ID. The queue length is useful

to see how much traffic the switch is receiving, the CPU and memory tells us about how

31

much resources the switch is allocating to process the packages and the Switch ID helps to

distinguish the multiple switches in the network. Table 4.1 is an example table of metrics

and their purposes on the behavior analysis

Table 4.1: Overview of Initial Metrics Considered for Behavioral Fingerprinting

Metric Purpose of Usage Monitoring
Method

CPU
The CPU usage is related to an abnormal increase or

decrease of instructions in case of an anomaly.
Bugs and malicious attacks can increase the usage of CPU.

Linux top
command

RAM
RAM monitoring helps us to detect anomalies if they

allocate memory to do malicious activity or due to misconfiguration.
Linux top
command

After the set of metrics is defined, the network manager must find a way to collect

the metrics they will be monitoring. This can be achieved using software or scripts spe-

cialized in collecting data from switches. Now the network manager must generate traffic

to trace a normal behavior of the network devices.

4.3 Traffic Generator

Traffic generation is used to set a normal setup of the network so we can under-

stand the behavior of the devices in a daily basis and distinguish it from an anomaly.

This can be achieved simulating a network in a virtualized environment (e.g., Mininet),

creating a real-life network that behaves similarly to the real one, or using a functional

architecture and its daily traffic to monitor it. It is also possible to emulate an traffic with

anomalous activity, such as flood attacks or elephant flows in order to discard irrelevant

features or to choose better ML models that makes more precise predictions given the

anomalous scenario.

In an emulated traffic, we must establish relations between the switches and hosts

(e.g., who sends package to who) and the bandwidth of the connections. This is useful

for emulating attacks, since flood attacks for example can increase the bandwidth in order

to preclude the network functionality, so we need a baseline to distinguish the normal

activity from an anomaly. In a real-life scenario, it would be useful to know the bandwidth

of the network if attacks simulations would be conducted.

There many ways to generate traffic to monitor our testbed (e.g., HTTP request-

s/responses, File Transfer Protocol (FTP) or Secure Copy Protocol (SCP) and Domain

Name System (DNS) Requests). One useful way is using iperf/iperf3, a tool for active

32

measurements of the maximum achievable bandwidth on IP networks. It supports tuning

of various parameters related to timing, buffers and protocols (e.g., Transmission Control

Protocol (TCP), User Datagram Protocol (UDP), Stream Control Transmission Protocol

(SCTP) with Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6)).

For each test it reports the bandwidth, loss, and other parameters. (DUGAN ELLIOTT,)

We can create UDP clients and servers using iperf and then send packages to

different hosts. Using a python script, we can automate this feature and emulate different

hosts communicating and switch forwarding packages like in real world.

4.4 Monitoring and Data Processing

While the traffic flows, the network manager must collect the metrics from the

switch. To do so, we use monitoring tools, such as specialized softwares or scripts that

execute commands that informs about the switch behavior. One can use Linux commands

such as proc and perf, which give us information about the resource usage of processes,

and collect the resource metrics with shell scripts. We can use Scapy, a Python library

for manipulating packets to sniff packages and extract headers information, which are

inserted in package headers.

Here is an example of bash script that access how many threads a switch process

has and its virtual size memory:

PROCESS_STAT=($ (sed −E ’ s / \ ([^)] + \) / X/ ’ " / p roc / $PID / s t a t "))

PROCESS_THREADS=${PROCESS_STAT [2 0] }

PROCESS_VSIZE=${PROCESS_STAT [2 3] }

This consists of using Regular Expressions to isolate the values and save them as

an array. This array is organized in such way that their elements correspond to the values

that we want (e.g., Process Virtual Size in the 23 position of the array). As you can see,

the data is extracted and organized in a efficient way, so can be stored later on.

For more precise data collection, some hours might be necessary to monitor the

network. Networks with high complexity and with different behavior along the day may

need much more monitoring. There are some scenarios where a network along the week

shows specific bandwidth which should not be considered as an anomaly, but simply a

usual pattern for this time span.

It is also the case to consider different time spans of data collection. Monitoring

33

each second gives us a more precise and granular analysis of the device, however if we

monitor each 5 seconds, we have a better notion of the average values of each metric.

The data processing step consist in saving the data in such organized way so we

can understand it. Naturally, the data also must be organized so it can be used for training

the ML models for anomaly detection. The monitor collects the data and saves it into a

csv file for example, the file name must be referring to the switch or the process related to

the switch.

4.5 Anomaly Detection and Behavioral Fingerprinting

After processing and selecting the most relevant data, we achieved a Behavior

Fingerprint, which means we know what is a normal behavior for the given devices. This

means we can use this fingerprint to analyzes and detect outliers in the device behavior.

In this step, we use the Behavior Fingerprint to train an unsupervised ML model to

detect anomalies. There are many options of models, it is the manager task to choose the

most viable model to detect anomalies using the features selected by they. It is important

to use Data Analysis tools such as plots and correlation matrices to see what kind of model

would benefit with the behavior analyzed. For example, Local Outlier Factor was used

in our evaluation scenario because we have identified isolated regions with anomalous

activity while looking the Resident Set Size Memory graphic. This algorithm performs

really well with outliers in isolated points. We also used the One-Class Support Vector

Machine because it copes great with high-dimensional data, and we used several features

to analyze our behavior. After the tuning step, the anomaly detection is ready to be de-

ployed on a real life network. We must monitor and gather data while the network flows

and we must put it on test using our anomaly detection system.

In the next section, we evaluate FEVER using a Proof-of-Concept (PoC) imple-

mentation to show how it handled the detection of anomalous traffic flow and P4 program

alterations. For that, different scenarios are built and evaluated in a quantitative and qual-

itative way.

34

5 EVALUATION

In this section we present all evaluations conducted in order to test our approach

regarding its performance in identify anomalous behavior in both switch processing and

P4 programs. All experiments were conducted in a virtualized scenario, using Mininet

and BMv2 switches, as described below.

5.1 Initial Setup

We conduct a set of experiments to prove the feasibility of the proposed approach

for Behavioral Fingerprinting of programmable networks. For that, we built our testbed

using on well-known resources and applications for programmable networks. The setup

consists a Mininet virtual network with three bmv2 switches and three hosts, running ap-

plications from the P4 Language tutorials repository (FOUNDATION, 2023), most pre-

cisely the Multi-hop Route Inspection (MRI) implementation. The topology considered

is shown in Figure 5.1. A Python script was developed to setting up the Mininet environ-

ment and configure the hosts and bmv2 switches. Also, iperf (SIATERLIS; GARCIA;

GENGE, 2012) was integrated to the script in order to allow the creation of different

flow behaviors according to the tests needs, such as a normal flow of packets between all

switches and specific elephant flows.

To collect resource data from the switches, we have written a shell script that

runs the Linux perf and proc commands simultaneously. The script collects metrics each

second and save the collected data to .csv file for each switch during a time of one hour.

For that, the PID of each virtual switch is identified. As Mininet treats each switch as

a single process, it is possible to identify the PID corresponding to the switch activity

and then monitored it using proc and perf commands. Thus, after one hour running the

simulation, we have gathered the analyzed data to csv file with the PID of the switches.

The normal behavior of the network is established according to the configuration available

in Table 5.1. Therefore, each experiment consisted of running the p4lang Makefile tutorial

with modifications to generate the desired traffic (cf. Table 5.1) for 1 one hour. The

behaviors considered involve (i) normal traffic, (ii) anomalous traffic, and (iii) modified

traffic. Table 5.1 shows how the normal traffic is defined in terms of source/destination

and size. The (ii) anomalous traffic is defined as a elephant flow that floods the network

using the maximum available throughput. For the (iii) modified behavior, we consider a

35

Figure 5.1: Proposed Topology for Experiments

Switch3

Switch1
Switch 2Host 1

Host 3

Host 2

Source: Original results from the research

MRI with modifications, such a conditional branch and arithmetic operations.

Table 5.1: Traffic and Connections Considered for a Scenario of a Normal Traffic Flow
Source Host Destination Host MB/s

Host 1 Host 2 1
Host 1 Host 3 10
Host 2 Host 3 10
Host 2 Host 1 10

Source: Original results from the research

The experiments have to be run a number of times until the behaviors can be pre-

cisely modeled. For each round, we create a heat-map of all metrics and drop the metrics

with high correlation. Next, a line bar is plotted and a manual analysis is performed in

order to classify and calibrate the model behavior. For our experiments, we ran three

times for each behavior in order to create our training dataset for normal, anomalous, and

modified behaviors. Therefore, the experiments were ran nine times in total, with 1 hour

duration each. An overview of the methodology applied is depicted in Figure 5.2.

Step 1 comprises the selection of metrics to be considered (e.g., RAM memory

and CPU usage). Next, in Step 2, the Mininet environment is deployed and the network

traffic generated according to the behavior demands. A shell script monitors, as Step

3, the defined metrics in real-time during 1 hour and save it for further analysis. For

the analysis, in Step 4, different plots are performed in order to identify high correlated

36

Figure 5.2: Overview of the Methodology to Create Fingerprinting of Normal, Anoma-
lous, and Modified behavior.

Metrics Selection
(Resource metrics)

Metrics Collection
(Shell Script)

Behaviors Simulation
(Mininet and Iperf)

Behavior Analysis
(Heat Map and

Line Plot)

Behavior Model
(Normal, Anomalous,

and Modified)

1 2 3 4 5

Source: Original results from the research

metrics and understand the current behavior. At this step, some metrics can be removed

and other can be added for a next round of experiments. Finally, in Step 5, the behavior

model is defined, which comprises metrics that are relevant to highlight changes in the

behavior based on the traffic (normal and anomalous traffic behavior scenarios) and also

P4 programs running in the network (e.g., modified scenario).

5.2 Feature Selection

After the selection of metrics and monitoring activities (Steps 1–3), the feature

selection have to be performed. Feature selection is an important step for establishing

a Behavior Fingerprint of the device. It consists of gathering the data defined by the

metrics selections and choosing the most relevant ones using tools to analyze correlation

between the features. After doing the feature selection, the Behavior Fingerprint is ready

for training a ML model for predicting anomalies.

The metrics were gathered using perf and proc commands in Linux. The perf

metrics collected consist on information with high granularity in the hope of detecting

small fluctuations in the behavior of the switch. Those include time elapsed during the

perf command execution, cycles, instructions, branches, branch misses, task clock, con-

text switches, CPU migrations and page faults. The proc metrics used were the process

virtual size, total memory usage, Resident Set Size (RSS) in KB and the percentage of

RSS used.

We have also used a heatmap to show the correlations between metrics, in order

to drop features that were not relevant when preparing the dataset to train the model.

Heatmaps are useful for feature selection because we can identify high correlated features

that may impact in the quality of the predictions. High correlated features might provide

redundant information, resulting in overfitting. Therefore, it is important to remove such

kind of features to achieve better model performance. The darker the color in heatmap

is, the more unrelated the feature is compared to other ones. Thus, features with colors

37

closer to white (1) should be removed.

It is important to mention that was verified that some features reduced their cor-

relation with traffic intensity. For example, instructions have shown high correlation to

another feature in a low package traffic environment, while this correlation is reduced

when we intensified the traffic. Thus, we did not drop features that shown a reduction of

correlation in certain environments.

Figure 5.3: Features Correlation Heatmap

Source: Original results from the research

Based on that, the Time Elapsed (s), RSS (in percentage), Virtual Memory Size,

Total Memory Usage (in percentage) where dropped due their high correlation with the

other features. The resulting correlation heatmap is shown in Figure 5.3. For example,

it can be observed that there is only one light diagonal in the matrix with the value 1,

showing that the high correlation is only between the feature itself. The features with 99

% correlation were maintain since their not correlated to other values more than one, and

due the high granularity of the values.

After the heatmap analysis, a line plot is provided in order to do a more in-depth

analysis. Some features might present overlapping or unidentifiable anomalous behavior,

which will need to be dropped to improve the performance of some ML algorithms.

The most perceptive difference in visual analysis occurred with the anomalous be-

havior against normal behavior. However, most of these features were overlapping, which

can present a challenge for ML algorithms to recognize an anomaly. The overlapping is

38

Figure 5.4: Analysis of Overlapping Features

(a) CPU Cycles (b) CPU Instructions

(c) Branches (d) Branch Misses

Source: Original results from the research

shown in Figure 5.4. The most relevant feature was the RSS in KB, in both anomalous

traffic and modified traffic, whose lines never touched the normal traffic one, as depicted

in Figure 5.5 (a) and (b).

Therefore, based on the feature selection it is possible to determine from a set of

metrics, which metrics can be useful for the process of Behavioral Fingerprinting. Al-

though we used this set of metrics for our experiments, additional metrics can be also

considered and be analyzed following the process as explained above. Evaluations con-

ducted in different applications scenarios are provided in the next sections. All of the

scenarios considers the feature selection approach provided in this section.

Finally, we use the selected features to build the Behavior Fingerprint and train

the model for anomaly detection, including anomalous traffic and modified P4 programs.

In the rest of this section, we will introduce scenarios considered and provide information

about the evaluations performed for these different scenarios.

For training our models, we have considered two ML algorithms: OCSVM and

LOF. These algorithms ran using the remaining features after the feature selection. Some

features were dropped temporarily to check how do the models performance behave with

the absence of useful features. 10 % of the data was used as the testing set, while the

39

Figure 5.5: RSS Comparison between Switches in Different Scenarios

(a) Switch receiving Anomalous Traffic vs. Switch with Normal Traffic

(b) Switch running Modified P4 Program vs. Switch Running a Regular P4 Program

remaining 90 % was used as the training set. The data was shuffled.

5.3 Detection of Anomaly Traffic

In this section we analyze the performance of our anomaly detection using the

anomalous traffic switch behavioral fingerprint. Therefore, the goal is to detect abnormal

increases in the data flow through a switch in order to identify possible flooding attacks

earlier, such as Ping Flood , SYN/ACK Flood and HTTP or Hypertext Transfer Protocol

Secure (HTTPS) Flood.

To create an anomalous traffic, we have used the command iperf to send UDP

packets. The default behavior of iperf when using UDP is to send data as fast as possible,

without any specific rate limiting, e.g., it floods the network with UDP packets to measure

the maximum throughput. For the context of this experiment, we will call this anomalous

behavior as "elephant flow". We have considered this scenario ideal since it would not

disrupt the network, but will send enough traffic to be detected. In a real world scenario,

it would be beneficial to detect an increase of flow before the DDoS caused by the data

flood.

Both host 1 and host 2 behaved like clients and host 3 the server. Both host 1 and

host 2 sent iperf UDP packets to host 3, creating a high traffic flow through switch 3, the

one connected to host 3. Since the elephant flow was directed to host 3, we analyzed only

its switch to detect the anomaly, since neither host 1 nor host 2 had enough traffic flow.

To calculate the performance of our models (also used for the other scenarios),

40

we have used the precision, recall, and F1-score metrics. Such a metrics calculation are

defined as follows:

True Positive Rate =
Number of correctly identified anomalies

Total number of anomalies

False Positive Rate =
Number of normal instances incorrectly identified as anomalies

Total number of normal instances

Precision =
Number of correctly identified anomalies

Total number of instances identified as anomalies

F1 =
2× Precision × True Positive Rate

Precision + True Positive Rate

The results using OCSVM shown an accuracy of 100 %. Since it is a ML algo-

rithm designed for situations where you only have examples of the normal class during

training, it learns a boundary around the normal instances and classifies anything outside

this boundary as an anomaly. The magnitude difference between the RSS memory helped

the algorithm to detect perfectly the anomaly. The lack of overlap in the RSS memory

feature could indicate a distinct pattern for the anomalous process in this particular aspect.

OCSVM may have learned a boundary that effectively captures this separation. This can

be verified if we drop the RSS feature. In this scenario, OCSVM performances poorly,

with a recall of 0.43 and a false-positive rate of 0.56.

The LOF also scored the same as OCSVM. LOF, in particular, is designed to

identify local deviations from the majority of data points. If anomalies form distinct

clusters or have noticeable local differences and low density, LOF can excel in detecting

them.

We conclude that memory analyze is a reliable source to detect flow changes,

preventing flood attacks. With more packages, more memory needs to be allocated in

order to operate the switch process properly.

5.4 Detection of Changes on P4 Programs

We have implemented slightly different versions of P4 codes to see how much

FEVER could detect a modified version of the original code.

41

This scenario was tested to all switches, since the code running on them is the

same. The idea is to identify modifications in the behavior of the switch if the code is

changed. In a real world scenario, a malicious agent might have access to the P4 programs

and might be able to change it to execute malicious activities or incapacitate the program.

In the first modification we have introduced few conditional branches and multi-

plications, to see how these operations would affect instructions and memory. We will

call this modification 1.

/ / I n t r o d u c e v a r i a b l e c a l c u l a t i o n s

b i t <32> s o m e V a r i a b l e ;

s o m e V a r i a b l e = 100 * 2323 ;

/ / Use s o m e V a r i a b l e i n c o n d i t i o n a l b r a n c h e s

i f (s o m e V a r i a b l e > 100) {

/ / Per form a d d i t i o n a l a c t i o n s or c a l c u l a t i o n s

hdr . s w t r a c e s [0] . qd ep th = hdr . s w t r a c e s [0] . qd ep th * 1313 ;

} e l s e {

/ / Per form o t h e r a c t i o n s or c a l c u l a t i o n s

hdr . i pv4 . i h l = hdr . i pv4 . i h l * 4 ;

}

}

This code instantiate a variable with a value 100 and it is multiplied in a equation.

This value is then multiplied by 2323. After that the code passes through a conditional

branch where the value instantiate as qdepth is multiplied by 1313. qdepth is a value that

represents the package queue depth length in the switch. Otherwise the Internet Header

Length(IHL) value would be multiplied by 4. This values have little impact in the CPU

and memory usage, but since we were dealing with features with high granularity and

precision, it is important to see how small changes impacts the network and if we can

detect it properly. We call this modification 1.

The second modification performed involves instantiating three registers, two of

32 bits and one of 64 bits. This represents a more substantial change since it allocates

useless registers, two 32 bits and one 64 bits. Even that P4 already have mechanisms

to inform if there are useless registers in the code, this scenario helps to see memory

fluctuations in the switch in case of changes. We call this modification 2.

42

c o n t r o l MyIngress (i n o u t h e a d e r s hdr ,

i n o u t m e t a d a t a meta ,

i n o u t s t a n d a r d _ m e t a d a t a _ t s t a n d a r d _ m e t a d a t a) {

r e g i s t e r < b i t <32 > >(2048) r eg1 ;

r e g i s t e r < b i t <32 > >(2048) r eg2 ;

r e g i s t e r < b i t <64 > >(50000) r eg3 ;

. . .

Unfortunately, the modification 1 (e.g., multiplication scenario) was too feeble to

be detected by our model. The changes in instructions, cycles and other features were too

similar to the normal switch. In our tests scenarios, we had 1 false positive in switch 3,

which was observed in RSS memory.

In the modification 2, we have prominent results for every single switch. As shown

in Figure 5.5, the registers allocation was noticed by the RSS memory analysis, in which

the OCSVM and LOF models had similar results with this dataset. LOF achieved a 100%

accuracy score in switch 1 and switch 2 and a recall of 0.88 in switch 3. OCSVM has

scored a little worse in switch 3, with 0.67 of recall, however it scored perfectly in switch

1 and 2.

Memory has shown again to be a reliable source of behavior information about

switches. Alterations in code means more or less variables and registers allocated, altering

the memory allocation, thus changing the behavior of the RSS in the switch.

The training dataset used for our evaluation scenarios is available at our git repos-

itory (SAUERESSIG, 2024). We made it so everyone interested can replicate our results

and implement their own experiments with the FEVER methodology.

5.5 Detection of P4 Programs

We have conducted other experiments to see the fingerprint of individual P4 pro-

grams. We have tested with many examples of the P4 Tutorials, such as a link monitor

and an Explicit Congestion Notification (ECN) application. Each program has a individ-

ual set of instructions and memory behavior, which enabled us to identify each program

individually using ML models.

Figure 5.6 shows an comparison of the features related to a baseline. It consists

in the average quantity of each single feature related to a baseline value. The baseline

43

Figure 5.6: P4 program features comparison to baseline program features

Source: Original results from the research

experiment is a basic forwarding exercise from P4 Tutorials. The idea is to compare the

simplest implementation of a P4 program with the more elaborated ones. The value is a

percentage of how bigger or smaller are the feature values compared to baseline values.

Using a switch running the baseline code as a normal behavior, we have identified

MRI, ECN and Link Monitor as anomalies using LOF and OCSVM with perfect F1-

Score. In this scenario, dropping the RSS feature compromised so little of the F1-Score,

dropping to around 0.95. This shows us that other features are in fact relevant in analyzing

P4 programs and trying to create their Behavior Fingerprint.

5.6 Discussion and Limitations

After gathering many metrics to analyze the behavior of the switch, the RSS mem-

ory in KB has shown to be the most relevant feature, proving that analyzing memory usage

of switches might be a great source of information in order to identify if there is a abnor-

mal traffic flowing through the switch or if the P4 program running in the switch has been

modified in some manners. Figure 5.7 shows how relevant RSS was to the F1-Score com-

pared to other features in anomaly detection. Standing alone, it has surpassed detection

relying on other features, even itself combined to other features.

44

The importance of memory may be related to buffering the package received by

the switch. With more intense traffic flowing through the switch, more packages must

be buffered. The RSS present in the modified version of MRI was increased due the fact

we only allocated more memory in the code. However, relying only on features high

relevance by dropping other features might overfitting the model since the nature of an

anomaly is unknown. Future work may investigate why RSS memory change so much in

those scenarios and what other types of anomaly this feature can help to detect and how

to avoid overfitting.

Figure 5.7: Analysis of F1-Scores using Features

(a) LOF and OCSVM F1-Scores (Anomalous)

(b) LOF and OCSVM F1-Scores (Modified)

Source: Original results from the research

It is also important to mention that we have identified the abnormality in one

single device, which might different from approaches that consider links or many devices

to identify a abnormal traffic. FEVER has achieved high granularity in traffic analysis and

45

it has show versatility, being able to identify code alterations as well.

The identifiability degree of P4 code changes can still be improved, since this work

is exploratory in nature, which means we were able to identify changes when allocating

many registers, but we were unable to identify what is the minimum change necessary to

detect a modified code.

As a limitation, it is essential to note that our evaluations are conducted in the em-

ulated environment; therefore, due to different abstractions and technical aspects, there

are challenges to implementing it in real-world devices (e.g., Tofino and FPGA). For ex-

ample, our emulated environment uses one single PID for a switch, while many processes

are involved in a switch functionality in real life. However, adaptations are possible -

from metrics collection to Behavioral Fingerprinting - to efficiently apply our framework

in various scenarios and types of devices. The research papers resulted as part of this

work are also highlighted in Appendix A.

46

6 CONCLUSION AND FINAL REMARKS

This Bachelor Thesis proposed FEVER, a framework for the Behavioral Finger-

printing of programmable networks, including detecting the misbehavior of P4-based

switches and P4 programs. ML-based models were employed together with statistical

processing to map and understand metrics that highlight potential anomalies given a traf-

fic and a set of P4 programs running. This allows the identification of (i) anomalous traffic,

(ii) malicious changes in the P4 program’s code, and the (iii) replacement of P4 programs

to disrupt the network functionality and associated services. In real-world scenarios, all

of these anomalies can happen in parallel, thus making clear the need for automated ML

models ready to infer from different data patterns. Like the fever in the human body, our

approach highlights abnormal activity in the system that might compromised it by using

ML.

As limitation, there still the need to implement a real-world scenario (e.g., Tofino

and FABRIC testbed) with real-time detection. For now, FEVER only detected anomalies

from data collected for hours and do not response during the network functioning. Also,

it is based on emulation using Mininet and bmv2. Therefore, although the approach can

fit other scenarios, the metrics collected are still dependent on such technologies. Others

experiments with more complex networks and interactions must be analyzed, as well other

types of anomalies and ML models can be explored for a more accurate prediction.

In conclusion, our experiments provide essential insights into the fingerprinting of

programmable networks, and our FEVER framework has proven to be a suitable method-

ology for analyzing the behavior of programmable switches and P4 programs, which can

be adapted to real-world scenarios. We look forward to anomaly detection systems im-

proving and mitigation techniques development, so in the future we have not only de-

tection (e.g., FEVER) but also an entire immunologic system for computer networks that

allows for mitigation of imminent threats

Future work includes: (i) investigation of the sensitivity of detection of small

changes on P4 program codes and (ii) analysis of additional metrics for Behavioral Fin-

gerprinting, including full integration of INT framework and syscalls to provide more

information to represent complex behaviors better, (iii) real time anomaly detection, (iv)

using FEVER for anomaly mitigation. Furthermore, implementation on real-world sce-

narios composed by Tofino switches is envisioned.

47

REFERENCES

ALMEIDA, L. C. de; PASQUINI, R.; VERDI, F. L. Using Machine Learning and In-band
Network Telemetry for Service Metrics Estimation. In: IEEE 10th International
Conference on Cloud Networking (CloudNet 2021). Cookeville, TN, USA: IEEE,
2021. p. 33–39.

ASSEN, J. V. D. et al. CoReTM: An Approach Enabling Cross-Functional Collaborative
Threat Modeling. In: IEEE International Conference on Cyber Security and
Resilience (CSR 2022). Virtually: IEEE, 2022. p. 189–196.

BAI, S.; KIM, H.; REXFORD, J. Passive OS Fingerprinting on Commodity Switches.
In: IEEE 8th International Conference on Network Softwarization (NetSoft 2022).
Milan, Italy: IEEE, 2022. p. 264–268.

BOSSHART, P. et al. P4: programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., Association for Computing Machinery, New
York, NY, USA, v. 44, n. 3, p. 87–95, jul 2014.

BREUNIG, M. M. et al. LOF: identifying density-based local outliers. SIGMOD Rec.,
Association for Computing Machinery, New York, NY, USA, v. 29, n. 2, p. 93–104, may
2000.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM
Comput. Surv., Association for Computing Machinery, New York, NY, USA, v. 41, n. 3,
jul 2009. ISSN 0360-0300.

DING, D.; SAVI, M.; SIRACUSA, D. Tracking Normalized Network Traffic Entropy
to Detect DDoS Attacks in P4. IEEE Transactions on Dependable and Secure
Computing, IEEE, v. 19, n. 6, p. 4019–4031, 2021.

DONG, S. et al. CPG-FS: A CPU Performance Graph Based Device Fingerprint Scheme
for Devices Identification and Authentication. In: IEEE CyberScience and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech 2019). [S.l.]: IEEE, 2019. p.
266–270.

DUGAN ELLIOTT, A. M. P. P. iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. <https://iperf.fr/>.

DUMITRESCU, D. et al. bf4: Towards Bug-Free P4 Programs. In: SIGCOMM 2020.
Virtually, USA: [s.n.], 2020. p. 571–585.

FOUNDATION, O. N. P4Language Repository. 2023. <https://github.com/p4lang>.

FRANCO, M. et al. SecGrid: A Visual System for the Analysis and ML-Based
Classification of Cyberattack Traffic. In: IEEE 46th Conference on Local Computer
Networks (LCN 2021). Edmonton, Canada,: IEEE, 2021. p. 1–8.

FRANCO, M. F.; GRANVILLE, L. Z.; STILLER, B. CyberTEA: a Technical and
Economic Approach for Cybersecurity Planning and Investment. In: 36th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2023). Miami, USA:
IEEE/IFIP, 2023. p. 1–6.

https://iperf.fr/
https://github.com/p4lang

48

GULENKO, A. et al. A System Architecture for Real-time Anomaly Detection in
Large-scale NFV Systems. Procedia Computer Science, v. 94, p. 491–496, 2016. 11th
International Conference on Future Networks and Communications (FNC 2016) / The
13th International Conference on Mobile Systems and Pervasive Computing (MobiSPC
2016) / Affiliated Workshops.

HAN, S. et al. Anomaly Detection Based on Temporal Behavior Monitoring in
Programmable Logic Controllers. Electronics, v. 10, n. 10, 2021.

HAUSER, F. et al. A Survey on Data Plane Programming with P4: Fundamentals,
Advances, and Applied Research. Journal of Network and Computer Applications,
v. 212, p. 103561, 2023.

HUANG, K. et al. The Devastating Business Impacts of a Cy-
ber Breach. 2023. Harvard Business Review, <https://hbr.org/2023/05/
the-devastating-business-impacts-of-a-cyber-breach>.

KREUTZ, D. et al. Software-Defined Networking: A Comprehensive Survey.
Proceedings of the IEEE, v. 103, n. 1, p. 14–76, 2015.

KUZNIAR, C. et al. IoT Device Fingerprinting on Commodity Switches. In: IEEE/IFIP
Network Operations and Management Symposium (NOMS 2022). Budapest,
Hungary: [s.n.], 2022. p. 1–9.

KUZNIAR, C.; NEVES, M.; HAQUE, I. IoT Device Fingerprinting on Commodity
Switches. In: Dalhousie Computer Science In-House Conference. Budapest, Hungary:
IFIP, 2022. p. 1–9. Poster Session.

LAHIRI, K. Why Cybersecurity Should Still Be A Top Priority For Businesses. 2023.
Forbes, <https://tinyurl.com/forbesBusiness2023>.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A Network in a Laptop: Rapid Prototyping
for Software-defined Networks. In: 9th ACM SIGCOMM Workshop on Hot Topics in
Networks. Monterey, California: [s.n.], 2010. p. 1–6.

LI, G. et al. NETHCF: Enabling Line-Rate and Adaptive Spoofed IP Traffic Filtering. In:
IEEE 27th International Conference on Network Protocols (ICNP 2019). Chicago,
USA: IEEE, 2019. p. 1–12.

NGO, D. et al. WANMon: a resource usage monitoring tool for ad hoc wireless networks.
In: 28th Annual IEEE International Conference on Local Computer Networks,
2003. LCN ’03. Proceedings. Bonn/Konigswinter, Germany: IEEE, 2003. p. 738–745.

NUNES, B. A. A. et al. A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks. IEEE Communications Surveys Tutorials, v. 16,
n. 3, p. 1617–1634, 2014.

SANCHEZ, P. M. et al. A Survey on Device Behavior Fingerprinting: Data Sources,
Techniques, Application Scenarios, and Datasets. IEEE Communications Surveys
Tutorials, v. 23, n. 2, p. 1048–1077, 2021.

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach
https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach
https://tinyurl.com/forbesBusiness2023

49

SAUERESSIG, M. et al. An Approach for Behavioral Fingerprinting of P4 Programmable
Switches. In: Anais da XX Escola Regional de Redes de Computadores. Porto Alegre,
RS, Brasil: SBC, 2023. p. 55–60.

SAUERESSIG, M. F. F. M. FEVER-P4 Repository. 2024. <https://github.com/
ComputerNetworks-UFRGS/FEVER-P4>.

SAUERESSIG M. F. FRANCO, E. J. S. L. Z. G. M. An Approach for Behavioral
Fingerprinting of P4 Programmable Switches. In: XX Escola Regional de Redes de
Computadores (ERRC 2023). Porto Alegre, Brazil: [s.n.], 2023. p. 22–60.

SCHÖLKOPF, B. et al. Support Vector Method for Novelty Detection. Advances in
neural information processing systems, v. 12, 1999.

SIATERLIS, C.; GARCIA, A. P.; GENGE, B. On the use of Emulab testbeds for
scientifically rigorous experiments. IEEE Communications Surveys & Tutorials,
IEEE, v. 15, n. 2, p. 929–942, 2012.

SáNCHEZ HUERTAS CELDRáN, B. M. P. S. S. Secure Crowdsensing Platforms
Through Device Behavior Fingerprinting. Ediciones de la Universidad de Castilla-La
Mancha, p. 87–90, 2021.

TU, N. V. et al. INTCollector: A High-performance Collector for In-band Network
Telemetry. In: 14th International Conference on Network and Service Management
(CNSM 2018). Rome, Italy: IEEE/IFIP, 2018. p. 10–18.

USAMA, M. et al. Unsupervised Machine Learning for Networking: Techniques,
Applications and Research Challenges. IEEE Access, IEEE, v. 7, p. 65579–65615, 2019.

WANG, Q. et al. Foundational Verification of Stateful P4 Packet Processing.
In: SCHLOSS-DAGSTUHL-LEIBNIZ ZENTRUM FÜR INFORMATIK. 14th
International Conference on Interactive Theorem Proving (ITP 2023). [S.l.], 2023.

ZHENG, C. et al. In-Network Machine Learning Using Programmable Network Devices:
A Survey. IEEE Communications Surveys Tutorials, p. 1–35, 2023.

https://github.com/ComputerNetworks-UFRGS/FEVER-P4
https://github.com/ComputerNetworks-UFRGS/FEVER-P4

50

APPENDIX A — RESEARCH PAPERS

Two research papers were developed from collaborations in the context of this

Bachelor Thesis. The research papers were submitted and accepted for regional and inter-

national conferences in order to collect feedback from the community. This allows for the

validation of the methodology and results generated by this Bachelor Thesis, including

improvements based on technical reviews and collaborations.

A.1 Accepted Paper – AINA 2024

M. Saueressig, M. F. Franco, E. J. Scheid, A. Huertas, G. Bovet, B. Stiller, L.

Z. Granville: FEVER: Intelligent Behavioral Fingerprinting for Anomaly Detection in

P4-based Programmable Networks; International Conference on Advanced Information

Networking and Applications (AINA-2024), Kitakyushu, Japan, October 2023, pp. 1-12.

• Title: FEVER: Intelligent Behavioral Fingerprinting for Anomaly Detection in P4-

based Programmable Networks

• Contribution: A refined framework for Behavioral Fingerprinting and anomaly de-

tection, including experiments showing the detection, using ML models, of changes

in P4 programs and anomalous traffic.

• Abstract: The evolving computer network landscape has enabled programmabil-

ity in various network aspects, including Software-defined Networking (SDN) for

control plane programmability and the introduction of the Programming Protocol-

independent Packet Processors (P4). P4, a vendor-independent protocol, allows

programmability on the data plane, offering flexibility for new services and appli-

cations. However, this flexibility introduces the need for automated solutions to

monitor and manage the security of evolving networks and services. In this work,

we propose FEVER, a framework utilizing P4-based telemetry and network device

(switch) resource consumption to create fingerprints of network and P4 applica-

tion behaviors. FEVER provides a comprehensive approach to identifying network

anomalies through various metrics. The framework was evaluated in a virtualized

scenario using unsupervised Machine Learning (ML) algorithms to detect diverse

P4 program behaviors and traffic overload, demonstrating its potential for early de-

tection of malicious activities in programmable networks. The results indicate high

accuracy in identifying misbehavior and detecting sudden changes in P4 programs.

51

• Status: Accepted for publication

• Qualis: A3

• Conference: 38th International Conference on Advanced Information Networking

and Applications (AINA-2024)

• Date: April 17 – April 19, 2024

• Local: Kitakyushu, Japan

• URL: To appear

• Digital Object Identifier (DOI): To appear

A.2 Published Paper – ERRC 2023

M. Saueressig, M. F. Franco, E. J. Scheid, L. Z. Granville: An Approach for

Behavioral Fingerprinting of P4 Programmable Switches; XX Escola Regional de Redes

de Computadores (ERRC 2023), Porto Alegre, Brazil, October 2023, pp. 55-60.

• Title: An Approach for Behavioral Fingerprinting of P4 Programmable Switches

• Contribution: Discussions on opportunities for Behavioral Fingerprinting on pro-

grammable networks and proposal of a framework.

• Abstract: Behavioral Fingerprinting is a technique used to understand the behav-

ior of devices, enabling a better understanding of their functionality and improved

anomaly detection. This paper proposes a methodology for generating the Behav-

ior Fingerprint of programmable switches. The methodology outlines the process

of selecting metrics for analysis, extracting data from them, and organizing the in-

formation to construct a Behavior Fingerprint for a programmable device within a

network.

• Status: Published

• Qualis: -

• Conference: 20ª Escola Regional de Redes de Computadores (ERRC 2023)

• Date: October 23 - October 25, 2023

• Local: Porto Alegre, RS, Brasil

• URL: <https://sol.sbc.org.br/index.php/errc/article/view/26004>

• Digital Object Identifier (DOI): <https://doi.org/10.5753/errc.2023.913>

https://sol.sbc.org.br/index.php/errc/article/view/26004
https://doi.org/10.5753/errc.2023.913

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Anomaly Detection and Machine Learning
	2.2 Behavioral Fingerprinting
	2.3 SDN and Programmable Networks
	2.4 Mininet
	2.5 Programming Protocol-independent Packet Processors (P4)
	2.6 Bmv2 Switch

	3 Related Work
	3.1 Behavioral Fingerprinting
	3.2 Collection of Metrics
	3.3 Anomaly Detection
	3.4 P4-based Cybersecurity Applications

	4 Approach
	4.1 FEVER Methodology
	4.2 Metrics Definition
	4.3 Traffic Generator
	4.4 Monitoring and Data Processing
	4.5 Anomaly Detection and Behavioral Fingerprinting

	5 Evaluation
	5.1 Initial Setup
	5.2 Feature Selection
	5.3 Detection of Anomaly Traffic
	5.4 Detection of Changes on P4 Programs
	5.5 Detection of P4 Programs
	5.6 Discussion and Limitations

	6 Conclusion and Final Remarks
	References
	Appendix A — Published Papers
	A.1 Accepted Paper – AINA 2024
	A.2 Published Paper – ERRC 2023

